Naar de content

Voor opzienbarende astronomie hoef je niet ver van huis te zijn: in ons eigen zonnestelsel komen genoeg spannende en verrassende verschijnselen voor. In dit dossier gaan we op reis van de kern van de zon naar de grens van haar invloedsgebied.

Wat is het zonnestelsel?

Voor de oude Grieken was het heelal een stuk kleiner dan voor ons. Je had de aarde, de sterrenhemel, en een klein aantal lichamen dat ten opzichte van de sterrenhemel bewoog: de dwaalsterren of planetes. Mercurius, Venus, Mars, Jupiter en Saturnus werden rustig op één hoop gegooid met de zon en de maan. De aarde had een spilfunctie als middelpunt van het geheel.

Sindsdien is er nogal wat veranderd. De aarde heeft zijn plaats afgestaan aan de zon, de maan is een plekje gedaald in de rangschikking. Er zijn nog twee planeten bij gevonden, en tientallen manen bij de planeten. We hebben gordels van steen- en ijsklompen ontdekt, tientallen dwergplaneten en een aardig aantal kometen. Dat geheel noemen we het zonnestelsel. Bovendien blijken de sterren niet slechts lichtende puntjes, maar zonnen zoals de onze, met in veel gevallen hun eigen planetenstelsel. Ook dat blijkt maar het topje van de ijsberg: sommige ‘sterren’ zijn namelijk complete Melkwegstelsels, waarin miljarden sterren in alle soorten en maten ons toeschijnen.

Het heelal bleek dus een stuk groter te zijn dan de oude Grieken hadden voorzien. Tegenwoordig noemen we de zon en alle voorwerpen die een baan daaromheen beschrijven bij elkaar ons zonnestelsel. In dit dossier maken we op een reis van binnen naar buiten kennis met de bijzondere buren waar we ons stukje heelal mee delen.

NASA-beeld van de zon.

De zon met hete gebieden en een uitgestoten gaswolk gezien door een speciaal (Helium-II) filter.

SOHO-EIT Consortium/ESA/NASA

De zon

99,86% van de massa van ons zonnestelsel bestaat uit één hemellichaam: de zon. De zon is een middelgrote ster, van de klasse die door astronomen gele dwerg wordt genoemd. Naar schatting ontstond de zon zo’n 4,59 miljard jaar geleden uit een wolk stof en gas. Waarschijnlijk is er een supernova-explosie in de buurt geweest die voor een schokgolf in die wolk zorgde. De schokgolf duwde de stof- en gaswolk in elkaar, waardoor de zwaartekracht grip kreeg op een steeds sneller rondtollend klompje van die wolk. De zon – en de planeten die eromheen draaien – was geboren.

De zon is het enige voorwerp in ons zonnestelsel dat licht geeft. Dat licht ontstaat in de kern van de zon, waar de kernen van waterstofatomen onder hoge druk op elkaar gepakt zitten. Die kernen kunnen met elkaar fuseren, waarbij straling en deeltjes vrijkomen. De straling maakt onderweg naar de buitenkant van de zon nog veel meer straling los: lichtdeeltjes (fotonen) die onze planeet en de rest van het zonnestelsel van licht en warmte voorzien.

Van binnen naar buiten neemt de temperatuur van de zon af van 15 miljoen graden tot zo’n 6000 graden. Buiten het oppervlak van de zon, in de chromosfeer en de corona, neemt de temperatuur echter weer toe tot een paar miljoen graden. Hoe dat komt was tot voor kort een mysterie, maar lijkt nu eindelijk opgehelderd.

Mercurius

De kleinste planeet van ons zonnestelsel heet Mercurius. Hij dankt zijn naam aan de Romeinse boodschappergod die, met zijn gevleugelde helm, razendsnel berichten heen en weer bracht tussen de weerbarstige Olympiërs. Omdat Mercurius erg dicht bij de zon staat is hij alleen vlak voor zonsopkomst en vlak na zonsondergang soms te zien. Toch was hij al in de Oudheid bekend.

De middellijn van Mercurius is 2,6 keer zo klein als die van de aarde. De relatief grote kern neemt 42% van het volume van de planeet in beslag. Het oppervlak is rotsachtig en bekraterd: van dichtbij lijkt Mercurius verrassend veel op onze maan. Van een atmosfeer kun je nauwelijks spreken, vandaar ook dat de temperatuurverschillen tussen dag en nacht er bijzonder groot zijn. De maximumtemperatuur ligt rond de 430°C, ’s nachts daalt het kwik er tot -180°C.

De kleine, hete planeet Mercurius lijkt erg op onze maan.

NASA via publiek domein

Mercurius draait in 88 dagen om zijn zon en in 58 dagen om zijn as. Die combinatie zorgt ervoor dat een etmaal op Mercurius ruim 176 aardse dagen duurt. Een stuk langer dan een Mercuriusjaar dus! Een opvallend kenmerk van Mercurius is zijn sterke magnetische veld. De aanwezigheid van dat veld betekent dat de kern van Mercurius vloeibaar moet zijn, of in ieder geval lange tijd vloeibaar is geweest.

Ongeveer eens in de tien jaar komt Mercurius vanaf de aarde gezien voor de zon langs. We kunnen hier dan een kleine zwarte stip langzaam over de zonneschijf zien bewegen. De eerstvolgende Mercuriusovergang is op 9 mei 2016.

Hoewel er nog nooit een ruimtevaartuig geland is op Mercurius zijn er wel twee dicht in de buurt geweest om de planeet te fotograferen. De eerste was Mariner 10, in 1974 en 1975. Mariner 10 fotografeerde 45% van de planeet. Pas in 2008 werd de rest van de planeet vastgelegd door de MESSENGER-sonde. Die sonde bereikte begin 2011 een baan om Mercurius, waar hij metingen aan de samenstelling, de atmosfeer en het magnetische veld van de planeet zal doen. Japanse en Europese ruimtevaartorganisaties werken aan een nieuwe missie naar Mercurius, BepiColombo, die in 2013 gelanceerd moet worden.

Venus

Op de zon en de maan na is de planeet Venus het helderste object dat aan onze hemel te zien is. Omdat de planeet zo mooi en helder te zien is, als morgenster of avondster, kreeg hij de naam van de Romeinse liefdesgodin Venus. Veel later zou blijken dat de planeet verre van rustig en lieflijk is: de planeet is een snelkookpan waar verzengende hitte en zwavelregens iedere vorm van leven onmogelijk maken.

De middellijn van Venus is maar iets kleiner dan die van de aarde. Het oppervlak bestaat uit twee hoogvlaktes met daartussenin een aantal grote dieptes. Op een uitzondering na zijn alle geologische structuren op Venus vernoemd naar vrouwelijke wetenschappers en kunstenaars. De dichte atmosfeer van Venus bestaat voor het grootste deel uit koolstofdioxide (CO2). De druk is er ongeveer 90 keer zo hoog als op aarde. Dat levert een sterk broeikaseffect op, waardoor Venus met een gemiddelde temperatuur van 480°C nog een stuk heter is dan Mercurius.

Venus in ware kleuren, zoals ruimtesonde Mariner 10 hem zag.

NASA

Vanaf de aarde gezien heeft Venus, net als de maan, verschillende fases. In zijn perigeum (het punt waarop Venus het dichtst bij de aarde staat) is de planeet volledig donker. Er is dan wel een halo om de planeet heen te zien, waar zonlicht door de dichte atmosfeer valt.

Ongeveer twee keer per eeuw passeert Venus vanaf de aarde gezien de zon, steeds met een tussenpoos van acht jaar. De Venusovergang is een prachtig zichtbaar verschijnsel waarbij een zwarte cirkel langzaam over de zon kruipt. Op 8 juni 2004 kwam Venus voor het laatst over de zon heen, op 6 juni 2012 zal er weer een Venusovergang plaatsvinden. Pas op 11 december 2117 gebeurt dat nog een keer.

Venus Express

ESA/AOES Medialab via CC BY-SA 3.0 IGO

Het is lastig om veel over Venus te weten komen zonder er daadwerkelijk meetapparatuur heen te sturen. Dat komt door de dichte atmosfeer die bijna alle straling blokkeert. Totaan de jaren ’60 van de 20e eeuw was er dan ook heel weinig bekend over het onze buurplaneet.

Mariner 2 was de eerste ruimtesonde die kon zien dat er onder het relatief koele wolkendek van de planeet een gloeiend heet oppervlak zit. De Russische Venera 3 was de eerste sonde die op Venus zou landen. De sonde overleefde zijn landing echter niet. Sindsdien zijn er meer sondes op de planeet geland, waarvan sommige met meer succes. Toch houdt geen enkele sonde het meer dan een half uur vol in de Venusiaanse snelkookpan.

De meest recente Venusmissie is de Venus Express, die sinds 2006 in een baan om de planeet draait. Deze ESA-missie richt zich vooral op de atmosfeer en het wolkendek van Venus, en probeert bovendien een temperatuurkaart van het planeetoppervlak te maken.

Aarde

De grootste van de vier rotsachtige planeten in ons zonnestelsel is de aarde, op een gemiddelde afstand van zo’n 150 miljoen kilometer van de zon. Met een middellijn die iets groter is dan die van Venus en een gemiddelde temperatuur van een aangename 15°C is het de enige planeet in het zonnestelsel waarop vloeibaar water kan bestaan. De atmosfeer van stikstof en zuurstof houdt de warmte redelijk binnen, zonder het snelkookpaneffect van Venus te benaderen. Door de gematigde omstandigheden op aarde is het niet heel verrassend dat juist hier leven bestaat.

Onze maan is heel belangrijk voor de omstandigheden op aarde.

NASA via Publiek domein

Onze planeet is de eerste die niet alleen is, maar begeleid wordt door een maan. Verhoudingsgewijs is onze maan veruit de grootste van het zonnestelsel, en hij heeft een onmisbaar effect op de omstandigheden op aarde. Denk alleen maar aan eb en vloed, maar de maan heeft ook veel invloed op het klimaat. Waarschijnlijk is de maan kort na de geboorte van de zon ontstaan, bij een botsing tussen de aarde en een object ter grootte van Mars.

Hoewel er geen enkele planeet is waar we meer over weten dan over de aarde zijn er nog een paar onopgeloste raadsels. De precieze samenstelling van de kern blijft bijvoorbeeld verborgen, zodat we over het gedrag van het aardmagnetisch veld weinig accurate voorspellingen kunnen doen. Ook de beweging van de tektonische platen, die verantwoordelijk is voor de vorming van het reliëf op aarde, voor vulkanisme en aardbevingen, is wel redelijk begrepen maar slecht op kleine schaal voorspelbaar.

De eerste aardobservatiesatelliet was Landsat, die in 1972 werd gelanceerd. Inmiddels wordt onze planeet voortdurend in de gaten gehouden door een batterij aan satellieten met uiteenlopende meetinstrumenten. In de afgelopen jaren werden er satellieten gelanceerd die onder meer het zwaartekrachtveld van de aarde, de samenstelling van de atmosfeer en het effect van zonlicht op de atmosfeer in kaart moeten brengen.

Door de verschillen tussen de aarde en de andere planeten in ons zonnestelsel te bestuderen, kunnen we erachter komen wat de vereisten zijn voor het bestaan van leven op een planeet. Die kennis is nuttig bij de zoektocht naar buitenaards leven, momenteel aangejaagd door de vondst van honderden exoplaneten.

Mars

Op de aarde na is Mars de planeet waar we het meest van weten. Met een middellijn die ongeveer twee keer zo klein is als die van de aarde is het een kleine planeet. Hoewel hij groter is dan Mercurius is zijn dichtheid lager, met als gevolg dat de zwaartekracht op Mars het kleinst is van alle planeten in ons zonnestelsel. Aan het oppervlak van Mars komt veel ijzer(III)oxide voor. De planeet is dus verroest, waardoor hij zijn kenmerkende rode kleur krijgt. Die kleur heeft hem ook zijn naam opgeleverd: het vurige rood werd geassocieerd met Mars, de Romeinse god van de oorlog.

Als Mars aan de hemel te zien is lijkt hij op een heel heldere rode ster. Enkel Jupiter en Venus zijn duidelijker zichtbaar. Doordat Mars zo dichtbij staat is met een verrekijker al eenvoudig te zien dat het geen ster is, maar een schijfje. Mars heeft twee kleine maantjes, Phobos en Deimos. Dat zijn planetoïden die door het zwaartekrachtsveld van de planeet zijn ingevangen. De maantjes zijn zo klein dat ze pas aan het einde van de 19e eeuw ontdekt werden.

De rode planeet heeft poolkappen. Waarschijnlijk is er vroeger ook vloeibaar water geweest.

ESA/MPS/UPD/LAM/IAA/RSSD/INTA/UPM/DASP/IDA via CC BY-SA 3.0 IGO

Toen Mars net was ontstaan was er waarschijnlijk vloeibaar water op de planeet. Daar wijzen kleideeltjes op die door Marslanders zijn gevonden. Tegenwoordig zijn de omstandigheden op Mars niet meer geschikt voor vloeibaar water: op veel plaatsen komt de temperatuur niet boven het vriespunt uit, en als dat wel gebeurt dan verdampt het ijs direct. De ijle atmosfeer staat het bestaan van vloeibaar water niet meer toe.

De veranderingen in de omstandigheden op Mars komen voor een deel door perioden van sterk vulkanisme. De atmosfeer is in de loop der tijd minder dicht geworden, waardoor de planeet geen vloeibaar water meer vast kan houden. Als er ooit leven was op Mars, dan was het waarschijnlijk in de jonge jaren van de planeet toen er nog rivieren en zeeën waren.

Marsrover Spirit heeft in zeven jaar tijd een schat aan informatie over Mars opgegraven.

NASA/JPL via publiek domein

Dat we zoveel over Mars weten komt deels door het ontbreken van een atmosfeer, waardoor we het oppervlak van de planeet vanaf aarde goed kunnen zien. Voor een ander deel komt het door de grote hoeveelheid missies die naar de planeet toe zijn gestuurd. Mars is de enige planeet in ons zonnestelsel waarop vanaf de aarde gelanceerde sondes zijn geland en ook afzienbare tijd hebben kunnen functioneren.

De eerste sonde die langs Mars vloog was de Mariner 4, in 1965. Mariner 9 was in 1971 de eerste sonde die in een baan om een andere planeet dan de aarde terecht kwam. In 1971 landden ook de eerste sondes op Mars, twee Russische missies die geen van beide de landing overleefden. De Amerikaanse Viking 1 in 1976 had wel succes, en maakte de eerste, inmiddels wereldberoemde, panoramafoto’s van Mars. Na Viking 1 en 2 volgden Sojourner, Phoenix, Spirit en Opportunity. De laatste missie is marsrover Curiosity, die lange tijd op de planeet moet gaan rondrijden en onderzoek doen.

De Victoriakrater op Mars, gefotografeerd door Mars rover Opportunity. De foto is samengesteld uit drie weken aan fotomateriaal

NASA via Publiek domein

Planetoïdengordel

Na Mars blijft het een hele tijd leeg in ons zonnestelsel. De afstanden tussen de zon, Mercurius, Venus, de aarde en Mars zijn steeds ongeveer gelijk, maar tussen Mars en Jupiter zit twee keer zoveel ruimte als tussen de zon en Mars. Ongeveer op één derde van die ruimte treffen we de planetoïdengordel aan. Het woord planetoïde betekent planeetachtige. In sommige (met name uit het Engels vertaalde) artikelen worden ze ook wel asteroïde genoemd. Dat betekent sterachtige, en is dus een verkeerde term.

De planetoïden zijn kleiner dan planeten en manen en niet bolvormig. Dat komt doordat ze zo klein zijn: grotere voorwerpen nemen onder invloed van hun eigen zwaartekracht een bolvorm aan. Over het ontstaan van de planetoïdengordel zijn verschillende theorieën. De meest waarschijnlijke grijpt terug op de manier waarop planeten gevormd worden. Kleine brokstukken, planetesimalen genoemd, klonteren samen en vormen zo een planeet. De planetoïdengordel bestaat uit zulke planetesimalen, maar door de kracht die Mars en met name Jupiter erop uitoefenen was hun eigen zwaartekracht nooit sterk genoeg om tot een planeet samen te klonteren. Ondertussen zijn de brokstukjes verspreid geraakt door het zonnestelsel of opgeslokt door Jupiter, zodat alle planetoïden bij elkaar nog net genoeg zouden zijn voor de vorming van een dwergplaneet.

Planetoïde 5535 Annefrank, in beeld gebracht door het ruimteschip Stardust in 2002.

NASA via Publiek domein

Hoewel het gebruikelijke beeld van de planetoïdengordel een zone is waarin talloze brokstukjes je om de oren vliegen, zou je er in werkelijkheid weinig van merken als je er doorheen vloog. De hoeveelheid materiaal in de gordel is namelijk erg klein. Toch is het in de afgelopen decennia gelukt om een aantal planetoïden van dichtbij te bestuderen.

Er worden nog vaak nieuwe planetoïden ontdekt en het is dan gebruikelijk om ze te vernoemen naar een historische figuur. Dat kunnen wetenschappers en andere helden zijn, maar soms krijgen zelfs nog levende personen hun eigen planetoïde. Zo werd planetoïde 14282 onlangs naar Johan Cruijff vernoemd.

Jupiter met linksonder de Grote rode vlek.

NASA/JPL/USGS

Jupiter

Reuzenplaneet Jupiter is in zijn eentje 2,5 keer zo zwaar als alle andere planeten in het zonnestelsel bij elkaar. Het is de eerste gasreus, een planeet die zo zwaar is dat zijn mantel uit dikke lagen ijskoud gas bestaat. Met een simpele telescoop is de rode kleur van Jupiter al te zien, en als het helder is, zie je de typische banden die over de planeet heenlopen. Het stormt op Jupiter, en dat is het duidelijkst waar te nemen in de grote rode vlek. Deze vlek is eigenlijk een (anti-)cycloon, die al minstens 300 jaar onverminderd woedt.

Toen de Grieken Jupiter naar hun oppergod vernoemden, konden ze nog niet weten hoe terecht die naam zou zijn. Doordat de planeet zo massief is, draait hij niet simpelweg rondjes om de zon, zoals de andere planeten dat doen. De zon en Jupiter draaien samen om een middelpunt heen, dat buiten het oppervlak van de zon ligt. Een waarnemer uit een andere zonnestelsel zou de schommeling van de zon als gevolg van Jupiter kunnen meten! Als de planeet nog iets groter was, dan zou de druk in de kern zelfs groot genoeg zijn voor kernfusie. Jupiter zou dan geen planeet zijn, maar een kleine ster.

Een groot voorwerp heeft een sterk zwaartekrachtveld. Objecten die door ons zonnestelsel bewegen, krijgen daar allemaal mee te maken. Meteoroïden en kometen worden door Jupiter aangetrokken. Meestal verandert hun baan daardoor, maar soms is de aantrekking zo sterk, dat ze uiteindelijk op Jupiter neerstorten. Waarschijnlijk is die ‘stofzuigerwerking’ van Jupiter heel gunstig voor ons op aarde. Een groot deel van de objecten die mogelijk hier neer hadden kunnen storten, vindt al op Jupiter zijn einde.

Dit moet Galileo Galilei ongeveer gezien hebben toen hij in 1609 zijn telescoop op Jupiter richtte. Je ziet de planeet met de vier grootste manen.

astronomyonline.org via CC BY-SA 3.0

Grote planeten hebben vaak veel manen, en dat is zeker bij Jupiter het geval. De vier grootste manen werden al in 1610 ontdekt, door Galileo Galilei. Io, Europa, Ganymedes en Callisto werden vernoemd naar vier van Jupiter’s vele geliefden, en werden later bekend als de Galileïsche manen van Jupiter. Inmiddels weten we dat de planeet niet vier, maar meer dan zestig manen heeft.

Als Jupiter zichtbaar is, is hij één van de helderste ‘sterren’ aan de nachthemel. Met een verrekijker is al te zien dat hij geen ster is maar een planeet, en met een beetje telescoop zijn minstens vier van zijn manen zichtbaar.

Saturnus

De tweede gasreus Saturnus is een stuk minder groot dan Jupiter (ongeveer een derde van de massa), maar dankzij zijn imposante ringenstelsel is hij minstens even indrukwekkend. Hij draagt de naam van de Romeinse god van de landbouw, en is net als Jupiter, Mars, Venus en Mercurius al sinds de oudheid bekend. Saturnus is de enige planeet met een lagere dichtheid dan water: in een voldoende groot zwembad zou deze planeet blijven drijven!

Saturnus heeft het meest imposante ringenstelsel in ons zonnestelsel.

NASA / JPL / Space Science Institute via publiek domein

De grote ringen van Saturnus bestaan grotendeels uit ijsklompen, variërend van een paar centimeter tot een paar kilometer in doorsnede. IJs weerkaatst licht erg goed, en daarom zijn de ringen zo mooi zichtbaar. Galilei zag ze al, maar begreep nog niet wat die twee ‘handvatten’ van de planeet waren. In 1655 bekeek Christiaan Huygens de planeet met een betere telescoop, en hij beschreef dat de ‘handvatten’ van Galilei in werkelijkheid een ringenstelsel waren.

Net als Jupiter heeft ook Saturnus veel begeleidende manen. De reusachtige maan Titan is veel groter dan onze maan, en zelfs iets groter dan het kleinste planeetje Mercurius. Bijzonder is dat deze maan al eens bezoek heeft gehad van een aardse sonde. De veel kleinere maan Enceladus is voor astronomen een interessant studieobject. Op de ijzige maan komen geisers voor, en onder het oppervlak moet het knap warm zijn vergeleken met de rest van Saturnus’ omgeving. Het is goed mogelijk dat er diep onder de ijslaag van de maan een oceaan van vloeibaar water stroomt.

Uranus

Uranus is een zogenoemde ijsreus en is na de twee gasreuzen Jupiter en Saturnus de grootste planeet in ons zonnestelsel. De planeet is vernoemd naar de Griekse God van de Hemel en heeft tot zover bekend 27 manen.

Wolken zijn zelden zichtbaar op de egaal blauwe planeet.

NASA/JPL

Er is iets vreemds aan de hand met Uranus. De as waar de planeet om tolt ligt namelijk in hetzelfde vlak als de baan van de planeet om de zon. Geen andere planeet in ons zonnestelsel heeft dat. Wetenschappers denken dat dit door inslagen van grote hemellichamen is gekomen. Dat zou meteen het grote aantal manen kunnen verklaren omdat zo’n grote botsing veel brokstukken zou hebben opgeleverd.

De sterke kanteling heeft grote invloed op de seizoenen op de ijsreus. Uraanse ‘winters’ zijn pikdonker, in de zomer is er onafgebroken zon. En dan te bedenken dat elk seizoen op Uranus zo’n 21 aardse jaren duurt.

Uranus is met het blote oog net niet te zien vanaf de aarde. Als je weet waar je moet kijken dan kun je hem spotten met een verrekijker, het is dan een groen schijfje. Die kleur komt van het methaan, waar relatief veel van in de atmosfeer van Uranus aanwezig is.

Voyager-ruimtevaartuig van NASA.

Voyager 2 werd in 1977 gelanceerd.

NASA via publiek domein

Uranus heeft een aantal ringen die in 1977 per ongeluk werden ontdekt. Astronomen zagen dat sterren een aantal keer zwakker leken te worden als Uranus voorbij kwam. Dat bleek te komen door de dertien ringen die het licht van de achterliggende sterren steeds heel even verduisterde. Doordat Uranus ‘op zijn kant ligt’ lijken de ringen over de polen van de planeet te lopen.

Er is tot nu toe slechts één ruimtesonde bij deze planeet geweest. De Voyager 2-sonde passeerde de blauwe gasbol in 1986.

Neptunus

Neptunus lijkt erg op Uranus. Het is ook een blauwe ijsreus. Alleen is Neptunus wat zwaarder en dat komt omdat hij misschien een andere planeet heeft opgegeten. Neptunus is vernoemd naar de Romeinse god van de zee.

De planeet is het enige hemellichaam die door afwijkingen in andere planeetbanen is ontdekt. De ontdekking staat op naam van Urbain Le Verrier, John Couch Adams en Johann Galle en vond in 1846 plaats, alhoewel Galileo Galilei al een ‘ster’ had waargenomen die hij niet aanzag voor de planeet. Veel van wat we weten van Neptunus komt de de passage van Voyager 2 in 1989, dat is het enige bezoek vanaf de aarde geweest.

De sonde zag bijvoorbeeld zeer actieve stormen op het oppervlakte van de planeet. Neptunus heeft net als de andere reuzenplaneten geen vast oppervlak, de buitenste tien tot twintig procent van de planeet is gas. Als je al op Neptunus zou kunnen verblijven zou het er niet aangenaam zijn. Het is er zo’n 200 graden onder nul. Voyager zag ook dat de planeet minstens vijf complete ringen heeft, deze zijn echter erg donker.

Een afbeelding van Neptunus gemaakt door het ruimtevaartuig van de NASA.

Foto van Neptunus gemaakt in 1989 door NASA’s ruimtesonde Voyager 2.

NASA via Publiek domein

Triton is een bijzondere maan van Neptunus. De samenstelling lijkt op die van Pluto en daarom vermoeden astronomen dat Triton ook afkomstig is uit de verder naar buiten gelegen Kuipergordel en gevangen is door de zwaartekracht van Neptunus. Dat kan ook verklaren waarom Triton de ‘verkeerde’ kant op draaien (manen draaien normaal gesproken in dezelfde richting als de planeet om zijn eigen as). Triton is zal er overigens niet ‘zo heel lang’ meer zijn. Berekend is dat hij over ongeveer 100 miljoen jaar zal neerstorten op het blauwe oppervlakte van Neptunus.

Pluto en de Kuipergordel

Pluto is een dwergplaneet. Maar wel een bijzondere, want hij mocht zo’n 75 jaar lang als een volwaardige planeet door het leven gaan. Pluto moest deze titel in 2006 inleveren. Na een lange discussie besloten astronomen dat het officieel een dwergplaneet is. En dat is misschien maar goed ook, want er zijn sinds de ontdekking van Pluto in 1930 verschillende zogenoemde plutino’s gevonden die even groot of zelfs groter zijn dan Pluto. Als Pluto een planeet is, waarom zouden zij dat dan niet zijn? Het gevolg zou alleen nog maar meer getouwtrek zijn over objecten die wel of geen planeet zouden moeten zijn.

Pluto is vernoemd naar de Romeinse god van de onderwereld. Een duister figuur en dat komt wel overeen met Pluto. Op de plek waar de dwergplaneet zich ophoudt is er nog maar een fractie van het zonlicht dat wij hier op aarde ontvangen.

NASA’s _New Horizons_-missie bestaat uit een sonde die in 2006 werd gelanceerd en nu op weg is naar Pluto en zijn relatief grote maan Charon. Als de sonde daar is aangekomen in 2015 zal dat een hoop informatie opleveren. Nu is er nog maar erg weinig bekend over Pluto. We vermoeden dat hij bestaat uit een rotsachtige kern met daaromheen een mantel van bevroren water. Na Pluto zal de New Horizons-sonde doorvliegen naar een ander Kuipergordelobject, waar hij pas in 2020 zal arriveren.

De Kuipergordel zou bestaan uit miljarden komeetachtige objecten van steen en ijs.

NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/Alex Parker via publiek domein

Pluto maakt deel uit van de Kuipergordel, die vernoemd is naar de van oorsprong Nederlander Gerard Kuiper. Hij voorspelde in 1951 dat er zich voorbij de baan van Neptunus wel eens een grote hoeveelheid steen- en ijsklompen aanwezig zou kunnen zijn. In 1992 werd er een tweede groot object gevonden in de Kuipergordel en sindsdien zien er meerdere hemellichamen waargenomen die deel uitmaken van de gordel. Objecten zijn op deze afstand moeilijk waar te nemen omdat ze weinig licht reflecteren en er nauwelijks zonlicht doordringt tot deze buitenste delen van het zonnestelsel.

Oortwolk

We zijn aangekomen bij het laatste en verste onderdeel van ons zonnestelsel: de Oortwolk, bestaande uit miljoenen komeetachtige objecten, die nog net in het zwaartekrachtveld van de zon zitten. De wolk, vernoemd naar de Nederlandse astronoom Jan Hendrik Oort, lijkt enigszins op de Kuipergordel. Alleen is hij veel verder verwijderd van de zon. Zo’n 3.000 tot 100.000 keer de afstand van de zon naar de aarde, maar niemand weet eigenlijk echt tot hoe ver deze wolk strekt. De verste objecten zouden zelfs halverwege de afstand naar de dichtstbijzijnde ster (Proxima Centauri) kunnen staan!

De komeet Hale-Bopp vastgelegd in 1997.

Geoff Chester via publiek domein

Oort probeerde in 1950 een antwoord te vinden op de volgende vraag: waarom zijn er nog steeds actieve kometen? Als zo’n hemellichaam namelijk een aantal keren dicht bij de zon is geweest, zou al het omringende gas (wat voor de komeetstaart zorgt) verdwenen moeten zijn. Aangezien het zonnestelsel al miljarden jaren meegaat, zou er bijna geen enkele komeet meer over moeten zijn. Maar dat is niet zo, zoals de Hale-Bopp-komeet in 1997 bewees. Zelfs met het blote oog was die komeet ‘s nachts duidelijk te zien.

De oplossing, zo stelde Van Oort, was een bijna oneindige verzameling kometen die zich ver buiten de baan van Neptunus zou moeten ophouden. Door de zwaartekracht van de grote buitenste planeten zou er zo nu een dan een komeet uit de wolk worden geplukt en naar de binnenste regionen van het zonnestelsel worden geslingerd. Maar het kan ook zijn dat er zich in de Oortwolk een grote ‘planeet’ bevindt die de boel van tijd tot tijd verstoort en kometen kan lanceren. De wolk zou daarnaast wel eens bezoek kunnen krijgen van een andere ster.

Er zijn geen directe waarnemingen gedaan van de Oortwolk. Daarvoor is het vooralsnog te ver weg, en het licht dat objecten op deze afstand zouden weerkaatsen is te zwak. Maar vermoed wordt wel dat kometen als Hale-Bopp afkomstig zijn uit deze verste en donkere regio van ons zonnestelsel.